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QSPR studies for estimating the incorporation organic hazardous compounds in cationic surfactant (CTAB)
were developed by application of the structural descriptors and multiple linear regression (MLR) method.
Various structure-related descriptors were studied in order to derive information on hydrophobic, elec-
tronic and steric properties of solute molecules. Theoretical molecular descriptors selected by genetic
algorithms-procedure were followed to predict log Ks values by a stepwise-MLR method. A simple model
with low standard errors and high correlation coefficients was selected. It was also found that MLR
icellization
uantitative structure property

elationship
ationic micelle
ultivariate linear regression
azardous compound

method could model the relationship between solubility and structural descriptors perfectly. The pro-
posed methodology was validated using full cross validation and external validation using division of
the available data set into training and test sets. The squared regression coefficient of prediction for the
MLR model was 0.9624. The results illustrated that the linear techniques such as MLR combined with a
successful variable selection procedure are capable to generate an efficient QSPR model for predicting
the solubility of different compounds. The proposed model can be used adequately for the prediction and
description of the solubility of organic compounds in micellar solutions.
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. Introduction

It is very interesting for practical purposes that aqueous micel-
ar solutions can be used instead of more dangerous and toxic
rganic solvents in a wide range of industrial applications. They
rovide a simple path for fractionation and concentration of envi-
onmental and biological samples under mild conditions. In fact,
hey allow performing the efficient and selective removal of organic
nd inorganic hazardous compounds from aqueous streams by
imply adding a more, safe, cheap and versatile component so-
alled amphiphile. The micellar-enhanced ultrafiltration (MEUF)
nd cloud-point procedure have been applied for preconcentration
nd removal of several organic pollutants including pesticides, her-
icides, aromatic hydrocarbons, PCBs, aliphatic alcohols, aromatic
mines, phenols and chlorophenols from aqueous samples [1–4].

Microheterogeneous micellar solubilization environment could
lay an important role in determining the nature and relative mag-

itudes of the various factors that contribute to the solubilization
1]. Surfactants can also solubilize materials into solvents other
han water. Even when surfactant aggregation does not occur or the
ggregation number is small in a particular solvent in the absence
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f other material, the addition of solvent-insoluble material, such as
ater, may give rise to aggregation with consequent solubilization
f the additive [5]. In this way, surfactant micelles can enhance the
ensitivity and can bring about changes in solubility, pKa, chemical
quilibria, reaction rates and mechanisms, spectral distributions
nd intensities and the stereoselectivity of some chemical pro-
esses [6–9]. Therefore, surfactant organized assemblies have great
otential application to many processes of technological interest
nd in analytical chemistry such as separation science. Micellar
olutions has proposed for the development of extraction, purifi-
ation and preconcentration processes according to the ability of
icelles to solubilize different compounds [10–12].
One of the most successful approaches for the prediction of

hemical properties, starting solely with molecular structural infor-
ation, is modeling of quantitative structure–activity/property

elationships (QSAR/QSPR). The QSPR model provides significant
dditional insight into the relationship between the molecular
tructure and fundamental processes and phenomena in chem-
stry. Such a data processing strategy is useful in describing
he relationship between chemicals molecular structures and

nalytical parameters. The concept that there exists a close relation-
hip between bulk properties of compounds and their molecular
tructure allows one to provide a clear connection between the
acroscopic and the microscopic properties of matter [13]. Many

ublished QSPR models are based on correlations with experimen-

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:Jahan.ghasemi@gmail.com
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Table 1
Experimental Ks values for incorporation of nonionic solutes in CTAB

No. Solute Ks (M−1) No. Compound Ks (M−1)

Gases and aliphatic hydrocarbons
1 Oxygen 0.72 4 Propane 33
2 Methane 1.9 5 Cyclohexane 500
3 Ethane 8.7

Halocarbons
6 Dichloromethane 5.8 8 Tetrachloromethane 100
7 Chloroform 26 9 1-Iodobuthane 45

Aromatic hydrocarbons and derivatives
10 Benzene 36 15 Ethylbenzene 154
11 Nitrobenzene 46 16 Anisole 37
12 Chlorobenzene 104 17 Naphthalene 1500
13 Bromobenzene 157 18 Biphenyl 7200
14 Toluene 83 19 Anthracene 5340

Alcohols
20 1-Propanol 0.5 24 tert-Butyl alcohol 1
21 2-Propanol 0.4 25 1-Hexanol 26
22 1-Butanol 2.9 26 Cyclohexanol 6.2
23 Butan-2-ol 1.4 27 Benzyl alcohol 26

Phenols
28 Phenol 68 29 p-Cresol 170

Aldehydes and ketones
30 Benzaldehyde 15 32 Propiophenone 49
31 Acetophenone 18

Carboxylic acids and derivatives
33 Benzoic acid 140 36 Ethyl benzoate 33
34 Benzamide 10 37 p-Methyl benzoic acid 63
35 Benzonitrile 15
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of the molecules was examined and collinear descriptors (i.e.
R2 > 0.94) were detected. Among the collinear descriptors, one with
the highest correlation with log Ks retained and the others were
removed from the data matrix. After these steps, 27 descriptors

Table 2
Parameters of genetic algorithm GA

Cross-validation Random subset

Number of subsets 4
J.B. Ghasemi et al. / Journal of Ha

al data, mainly with octanol/water partition coefficients (Koc) and
ater solubility (Sw), others on molecular structure descriptors and
uch has been written about solubilization in micellar media. Very

ittle is actually known in any quantitative sense about the rela-
ionship between the molecular structure of a neutral solute and
ts solubility in a given detergent micelle [7,14]. Furthermore, sev-
ral investigations have developed empirical relationships between
he analytical parameters (i.e. cmc or Kraft point) and the structural
eatures of surfactants. However, all of these have been limited to
he homologous series of surfactants [15–17].

Therefore, the development of a theoretical model for calcula-
ion of the Ks for a diverse set of compounds seems to be necessary.
n order to study the influence of the molecular structure on micel-
ar solubility, it is desirable to develop the large possible set of
olutes with reliable Ks measurements. Due to the limited amount
f micellar solubility data in the literature, this effort focused on
olubility a heterogeneous set of neutral compounds in cationic
urfactant (CTAB). If structure-property relationships can be gen-
rally developed for this subset, it provides a good base to expand
he study to examine other micellar media. For the cationic surfac-
ants, solute hydrogen bond acidity favors incorporation into the

icelle. CTAB as an ionic surfactant provide a polarizable solubi-
ization environment. It has a higher electrostatic surface potential
nd a greater degree of counter ion binding. A positively charged
icellar surface should provide additional solubilization of orien-

ations of the interfacial water in which the hydrogens point away
rom the micellar surface [1,5].

. Experimental

.1. Data set

The experimental data utilized in this work consists of the micel-
ar solubility (Ks), for 40 solutes in CTAB were reported by Frank
uina et al. [1] (Table 1). The data set is heterogeneous, and includes
ractically all the principal functional groups present in pesticides,
erbicides and various organic pollutants. The standard experimen-
al conditions adopted for the Ks values were ambient temperature
20–30 ◦C) at low extents of solute incorporator in the absence of
ignificant amounts of added electrolyte or other additives. Some
f the chemicals in the literature database have more than one Ks

alue and the result of being derived from different sources; in these
ases were randomly selected. The modeled data were expressed
n logarithmic units (log Ks), for chemicals with a log Ks range of
0.39 to 4.06.

.1.1. Descriptor generation and variable selection
The strategy used in this study consists of four fundamental

tages: (a) selection of data set, (b) molecular descriptor gener-
tion, (c) GA-variable selection and (d) regression analysis. The
erivation of theoretical molecular descriptors proceeds from the
hemical structure of the compounds. In order to calculate the theo-
etical descriptors, all molecular structures were constructed with
he aid of ChemDraw Ultra version 9.0 computational chemistry
oftware and were optimized using Allinger’s MM2 force filed, the
emi-empirical AM1 algorithm by MOPAC and further optimiza-
ion was done using PM3 methods by default on the 3D-structure
f molecules in Chem3D Ultra version 9.0 (ChemOffice 2005, Cam-
ridge Soft Corporation) software media.
A total of 54 molecular descriptors of differing types based on 3D
tructure were calculated to describe compound structural diver-
ity. The descriptors calculated accounts three important properties
f the molecules: (a) thermodynamic, (b) electronic and (c) steric,
s they represent the possible molecular interactions which deter-

W
I
M
C
C

mines
38 p-Toluidine 42 40 Ethyl p-aminobenzoate 250
39 Aniline 22

ined the solubility of the studied molecules. These descriptors
sed as input variables for variable selection by genetic algorithm.

n our study, a genetic algorithm procedure was used for selec-
ion of descriptors using the PLS Toolbox (version 2.0, Eigenvector
ompany, USA). The GA is implemented in MATLAB (version 7.0,
athWorks, Inc.). For deriving the QSPR model, the GA analysis was

egun with multiple linear regression (MLR)-regression method for
opulation size of 64 and mutation rate 0.003. Other parameters
ummarized in Table 2.

MLR analysis was performed by the SPSS software, (SPSS Ver.
1.5, SPSS Inc.) by using stepwise method for model building.

.1.2. Data processing
In pre-reduction step, the calculated descriptors were searched

or constant values for all molecules and those detected were
emoved. To decrease the redundancy existed in the descriptors
ata matrix, the correlation among descriptors and with the log Ks
indow width 3
nitial term% 20%

aximum generation 100
onvergence (%) 80
ross-over Double
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Table 3
Correlation matrix for selected variables by GA

log K DPLLa HomoEb log Pc MPd RepEe

log K 1
DPLL −0.19805 1
HomoE −0.10216 0.222757 1
log P 0.860989 −0.23142 −0.02406 1
MP 0.577207 0.477531 0.007778 0.355147 1
RepE 0.76541 0.145376 −0.29033 0.650662 0.823401 1

a Dipole length.
b
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Homo energy.
c Octanol/water partition coefficient.
d Melting point.
e Repulsion energy.

ere retained for next analysis step. Thus, 27 molecular descriptors
nderwent subsequent variable selection. The genetic algorithm
as applied to the input set of these molecular descriptors for

ach chemical of the studied and the related response. The GA
odel searching is performed on the different populations of mod-

ls which can run separately. As a result, a total of five theoretical
escriptors were obtained for each of the 40 compounds in the data
et which is presented as the correlation matrix in Table 3. Correla-
ion coefficients are a measure of how closely two values (descriptor
nd property) is related to each other by a linear relationship. If a
escriptor has a correlation coefficient of 1, it describes the prop-
rty exactly. A correlation coefficient of zero means the descriptor
as no relevance. It is clear that the appeared descriptors in the
LR model are not highly correlated. To further evaluate the prob-

ble collinearity between selected descriptors ridge traces using
ifferent lambda values were sketched using ridge function of the
tatistics Toolbox 3.0 of MATLAB.

In order to perform examination of the final model, the available
ata set was split into a training set and external prediction sets
hrough activity sampling. Thus, by ordering the chemicals accord-
ng to their ascending experimental values, selecting the most and
he least active, and taking each chemical from the set in the pre-
iction set. More than 25% of the total data set to be used after
odel development for the external validation. The training set of

9 compounds with log Ks values in the range of −0.39 to 4.06, was
sed to adjust the parameters of the model, and the test set of 11
ompounds with log Ks in the range of 0.76–3.85 was used to evalu-
te its predictive ability. The underlying goal at this step is to ensure
hat both the training and the prediction sets separately span the
hole descriptor space occupied by the entire data set, and that the

hemical domain in the two data sets is not too dissimilar.

.2. Molecular modeling

A major step in constructing the QSPR models is finding a set
f molecular descriptors that represent variation in the structural
roperties of the molecules. The modeling and prediction of the
hysicochemical properties of organic compounds is an important
bjective in many scientific fields [18–20]. MLR regression is a linear
echnique that can determine the relative importance of descrip-
ors, are usually used to generate QSPR models. Also, this model has
een successfully employed in various aqueous solubility predic-
ions studies. MLR method provides equation linking the structural
eatures to the log Ks of the compounds:

og Ks = a0 + a1d1 + a2d2 + · · · + andn (1)
here the intercept (a0) and the regression coefficients of the
escriptors (ai) are determined by using the least-squares method.
i has the common definition, variable or descriptor in this case,
he elements of this vector are equivalent numerical values of a

0
t
s
r
t

us Materials 161 (2009) 74–80

D structures of the molecules or structural descriptors [21,22].
ere, we used MLR analysis on the molecular descriptors that have
een resulted in GA variable selection procedure. The GA-algorithm
pplied in this paper uses a binary representation as the coding
echnique for the given problem; the presence or absence of a
escriptor in a chromosome is coded by 1 or 0. The GA performs

ts optimization by variation and selection via the evaluation of the
tness function (RMSECV). The algorithm used in this paper is an
volution of the algorithm described in Ref. [23], whose parameters
re reported in Table 2. We obtained a five-descriptor subset, which
eeps most interpretive information for log Ks. In the next step,
he SPSS software was applied for each chemical compound and
he related response, in order to extract the best set of molecular
escriptors for construction a simpler model.

. Results and discussion

In order to find a relationship between log Ks and the struc-
ural features of the chemicals, the molecular descriptors that take
nto account different structural features was used. We used many
ifferent types of molecular descriptors, as the modeling input vari-
bles, in order to have the possibility of catching all the relevant
tructural features related to the studied response. As is general
he cases, the choice of descriptors are crucial in order to set up
reasonable model. Since collinear variables degrade the perfor-
ances of the models obtained by MLR analysis, attempts were
ade to detect and remove collinear descriptors. Currently, vari-

ble selection methods such as genetic algorithm and ant colony
ptimization are available which represent much better results in
omparison with stepwise regression [24–27].

It has already shown that genetic algorithm (GA) can be success-
ully used [28]. The application of the genetic algorithm-variable
ubset selection procedure provides a large set of possible models
ith nearly equivalent predictive performance [29]. The models are

ased on a variety of descriptors, reflecting the different aspects of
olecular structure [30].

.1. Evaluation and correlation analysis

The MLR technique was performed on the molecules of the
raining set. We began the analysis by employing the GA tech-
ique to search for the optimal linear model containing the best
olecular descriptors. The selected descriptors by GA were used

o develop a MLR model. The stepwise multiple regression analysis
as employed on the training data set to establish the quantita-

ive regression model. Stepwise-MLR is a popular technique that
ave used on the training data set to select the most appropriate
escriptors [31]. After regression analysis, a few suitable models
ere obtained among which the best model was selected and was

mployed for prediction. The best equation is selected on the basis
f the highest multiple correlation coefficient (R2) and simplic-
ty of the model. Squared regression coefficient (R2) is probably
he most popular measure of how well a regression model fits the
ata. Another useful method to evaluate the appropriateness of the
elected descriptor is the investigation of the collinearity between
escriptors using ridge lambda traces. To this end the ridge traces
sing different values of the lambda was constructed. The optimum
alue of the lambda was 0.01967 and the ridge regression coeffi-
ients for DPLL, HomoE, log P, MP and RepE are −0.1009, 0.0020,

.5695, 0.0640 and 0.0006, respectively. These results showed that
he descriptors HomoE and RepE are collinear and have no con-
iderable statistical impact on the final equation. Multiple linear
egression analysis provided a useful equation that can be used
o predict of compounds based on these parameters. This QSPR
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Fig. 1. Standardized coefficients versus descriptors in MLR model.

Table 4
Standardized coefficients and variable inflation factors (VIF) values for selected
descriptors of the MLR model

Source Standardized coefficients VIF

l
M
D

m
d
t

l

a
D
c

i
w
d
i
a
s
s
c
V
n
m

T
C

N

3

3
3
3
2

Fig. 2. Log Ks estimated by MLR modeling versus experimental values and residual
versus experimental log Ks in MLR model.

Table 6
Statistical parameters obtained by applying the MLR and PLS methods to the test set

Parameter MLR

RMSEP 0.169
REP (%) 9.561
SEP 0.176
R
N

t
s
t
p
f
l
i
v
o
e
o
f
a
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c

og P 0.71420 1.522
P 0.4246 1.183
PLL −0.2373 1.376

odel for the solubility of the compounds includes three molecular
escriptors. The result obtained from the multivariate combina-
ions is shown in Eq. (2).

og Ks = −1.1522 (±0.2901) + 0.0070 (±0.0015) MP

+ 0.8089 (±0.0897) log P − 0.1262 (±0.0454) DPLL (2)

In the proposed model, two of the three variables (log P and MP)
re related to the thermodynamic properties of the molecules and
PLL is related to electronic structure of molecules (e.g. the partial
harge distribution or the electronegativities of atoms).

Positive values in the regression coefficients reveal that the
ndicated descriptor contributes positively to the value of log Ks,

hereas negative values indicate that the greater values of the
escriptor have the lower value of the log Ks. In other words,

ncreasing the DPLL will decrease log Ks and increasing the log P
nd MP increases extent of log Ks of the organic compounds. Fig. 1
hows the effect of log P, MP and DPLL for the QSPR study of organic

olutes in CTAB. Table 4 shows the three independent variables
orresponding to MLR model with standardized coefficients and
IF values. The standardized regression coefficient reveals the sig-
ificance of an individual descriptor presented in the regression
odel. The greater the absolute value of a coefficient, the greater

able 5
omparison of experimental and predicted values of log Ks for test set by MLR model

o. Exp. (log K) MLR model

Pred. (log K) RE (%)a

6 0.763428 0.735717 −3.62977
3 1 1.016339 1.633874

14 1.176091 1.277663 8.636375
7 1.414973 1.480145 4.605885

10 1.556303 1.553416 −0.18549
7 1.623249 1.824273 12.38403
4 1.919078 1.980928 3.222899
2 2.146128 1.908906 −11.0535
8 2.230449 2.303061 3.255471
9 1.662758 1.913134 15.05786

18 3.857332 3.458646 −10.3358

a Relative error.

s
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T
T

F

1
2
3
4
5

E

2 0.9624
DSa 3

a Number of descriptors.

he weight of the variable in the model. Thus, the magnitudes and
igns of the coefficients should be compatible with the process of
ransferring a solute and its cavity from bulk water to the micellar
seudophase [1]. Experimental versus predicted values (Table 5)
or log Ks values and the residuals (predicted log Ks − experimental
og Ks) values, obtained by the MLR modeling, were shown graph-
cally in Fig. 2. This plot shows a good correlation of observed
ersus calculated solubility data for modeled dependent variables
f chemicals. Multiple regression analysis of these data yielded
xcellent fit (R2 = 0.9624) for chemicals in CTAB micelle. The model
btained is quite successful, bearing in mind the great variety of
unctionality: amino, alkyl, hydroxyl, carbonyl, carboxyl groups and
romatic rings. Furthermore, this data have been measured by dif-
erent groups in the diverse methodology and the lack of rigorous
dentity of experimental conditions. Methods include solubiliza-
ion at saturation (SOL), cmc depression (CMC), micellar liquid
hromatography (MLC), ultrafiltration (UF) and solute vapor pres-
ure techniques (SVP) [1].

The agreement observed between the predicted experimental
alues and the random distribution of residuals about zero mean
n Fig. 2 confirms the good predictive ability of MLR modeling. For
he constructed model, four general statistical parameters were

elected to evaluate the prediction ability of the model for solu-
ility. Table 6 shows the statistical parameters for the compounds
btained by applying the MLR method to the test set. The statistical
arameters root mean squares error of prediction (RMSEP), relative
rror of prediction (REP)% and standard error of prediction (SEP)

able 7
otal variance explained obtained by factor analysis

actor Initial eigenvalues

Variance percent Cumulative percent

46.20 46.20
28.54 74.74
18.76 93.50
5.45 98.96
1.04 100

xtraction method: unweighted least squares.
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as obtained for proposed MLR model. Also, the results obtained
rom factor analysis for training data show that three numbers of
actors can explain more than 90% of the variance observed in data
Table 7).

Each of the statistical parameters mentioned above were used
or assessing the statistical significance of the QSPR model. Addi-
ionally the developed MLR-QSPR model was also checked for

ulticollinearity problem by the calculation of correlation matrix
nd variance inflation factor values (VIF) using SPSS program
Table 5). As shown by correlation matrix, log P and repulsion
nergy (RepE) show a good correlation (0.86 and 0.76, respectively)
ith log Ks. It can be seen from this table that RepE and melt-

ng point (MP) has a high 0.82 intercorrelation. Furthermore, RepE
how a relatively high correlation (0.65) with log P. In both cases,
ach descriptor encodes different aspects of molecular structure.
hus, RepE is a redundant descriptor that its presence does not
mprove the results. Then the model suffers from the defect due
o collinearity. VIF values greater than five indicates that infor-

ation of descriptors can be hidden by correlation of descriptors
32,33].

.2. Model validation

Validation is a crucial aspect of any QSAR/QSPR modeling [34].
he accuracy of proposed MLR model was illustrated using the
valuation techniques such as leave one out (LOO) cross validation
rocedure and validation through an external test set.

.2.1. Cross validation technique
Cross validation is a popular technique used to explore the reli-

bility of statistical models. Based on this technique, a number
f modified data sets are created by deleting in each case one or
small group (leave-some-out) of objects. For each data set, an

nput–output model is developed, based on the utilized modeling
echnique. Each model is evaluated, by measuring its accuracy in
redicting the responses of the remaining data (the ones that have
ot been utilized in the development of the model) [35]. In partic-
lar, the LOO procedure was utilized in this study. A QSPR model
as then constructed on the basis of this reduced data set and

ubsequently used to predict the removed data point. This proce-
ure was repeated until a complete set of predicted was obtained.
he statistical significance of the screened model was judged by
he correlation coefficient (Q2), error of the estimation (0.38) and
he F-statistic (89.97). The predictive ability was evaluated by the
ross validation coefficient (Q2 or R2

cv) which is based on the predic-
ion error sum of squares (PRESS) and was calculated by following
quation:

2
cv ≡ Q 2 = 1 −

∑n
i=1(yi − ŷi/i)

2

∑n
i=1(yi − ȳ)2

(3)

here ŷi/i denotes the response of the ith object estimated by using
model obtained without using the ith object. Using this approach,

he model had a LOO Q2 of 0.87. This value of Q2 (Q2 > 0.5) can
e considered as proof of the high predictive ability of the model.
owever, this assumption is in many cases incorrect and can be

hat exist the lack of the correlation between the high LOO Q2 and
he high predictive ability of QSAR/QSPR models has been estab-

ished and corroborated recently [34]. Thus, the high value of LOO
2 appears to be necessary but not sufficient condition for the mod-
ls to have a high predictive power. These authors stated that an
xternal set is necessary. As a next step, further analysis was also
ollowed for chemical property of the new set of compounds using
he developed QSPR model.

o
o
o
p
i

us Materials 161 (2009) 74–80

.2.2. Validation through the external validation set
Validating QSPR with external data (i.e. data not used in the

odel development) is the best method of validation. However
he availability of an independent external validation set of sev-
ral compounds is rare in QSPR. Thus, the predictive ability of a
SPR model with the selected descriptors was further explored
y dividing the full data set. The predictive power of the regres-
ion model developed on the selected training set is estimated on
he predicted values of prediction set chemicals. A training set (29
olutes) of compounds was used to refine the model and a predic-
ion set (11 solutes) of randomly selected chemicals was chosen to
est the model. Experimental and predicted values for log Ks of pre-
iction set and the relative error values, RE (%), obtained by the MLR
odeling were shown in Table 5. A value of R2 near one indicates a

erfect linear fit.

.3. Interpretation of descriptors

The micellization potential of cationic surfactants covering
diverse range of structures is found to be well modeled by
combination of three parameters consisting of electronic and

hermodynamic properties. The best three-parameter equation
btained for the prediction of solubility for an unknown com-
ound. The most important descriptors in this correlation are
he thermodynamic and electronic features in the compound, the
actors that influence the solubility of each species. The QSPR
eveloped indicated that lipophilicity (log P) of the solutes, melt-

ng point (MP) of the molecules and Dipole length (DPLL) of the
olutes; the factors that influence the solubility of each species
nd satisfactorily describes the solubility of structurally different
olutes. Comparison of the standardized regression coefficient of
he descriptors appearing in MLR model shows that the log P of the

olecules has the largest effect on the Ks of the cationic surfactant
CTAB).

The models for predicting micellar solubility of neutral solutes
ased on calculated descriptors and electrostatic interaction have
reviously been developed using PLS and MLR regression in our
esearch group [30]. The equation derived in the mentioned work,
as presented a QSPR model for solubility in an anionic surfactant
SDS). We reported that the solubility of the organic chemicals was

ainly controlled by the hydrophobicity of the compounds with
he electronic property of minor role. In agreement with our previ-
us study, the hydrophobicity descriptor (log P) plays an important
ole in micellar solubility. The octanol/water partition coefficient,
sually as its logarithm, log P characterizes the effectiveness of
ydrophobicity of the compounds. It is a very important indica-
or of transport and permeation through membranes, interaction
ith biological receptors and enzymes, toxicity, and biological
otency. In environmental sciences the hydrophobicity is often
sed to predict solubility, the bioconcentration factor, and the
rganic adsorption coefficient (Koc). Although hydrophobicity is a
ey concept in surfactant science, to date log P has not found much
pplication in this field [17,30,36]. The fact that similar descrip-
ors have been reported to correlate with partition coefficients
f different compounds suggests that this correlation model has
ider applications [37]. The positive standardized coefficient for

og P parameter is in accordance with physical considerations; com-
ounds with higher hydrophobicities have stronger interactions
ith the medium and thus enhances the solubility of chemicals.

The melting point (MP) is a fundamental physical property

f compounds, which has been wide used for the calculation of
ther physicochemical properties such as vapor pressure, aque-
us solubility, transporting within organism and phase equilibrium
roperties. It is generally accepted that solubility of a compound

s strongly correlated with its melting point. Prediction models
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or solubility that include the melting point as a descriptor often
esult in acceptable accuracy of the solubility predictions [30,38].
f the forces holding the molecule in the crystal are strong, then the
olubility and vapor pressure will be low. Conversely, the melting
oint will be high, as the melting point is a measure of the energy
equired to disrupt the crystal lattice. For organic compounds,
he dominant intermolecular force affecting the melting point is
ntermolecular hydrogen bonding. Compounds with intramolecu-
ar hydrogen bonding normally exert less intermolecular attraction
nd, therefore, have a lower melting point than their intermolecular
ydrogen bonded analogues. Melting point also affects the toxicity
f a compound. As noted above, melting point affects solubility, and
olubility controls toxicity. If a compound is only poorly soluble, its
oncentration in the aqueous environment may be too low for it
o exert a toxic effect. Therefore, the melting point of a compound
epends mainly on the molecular size and symmetry, as well as
n intermolecular interactions. This physical property for a crys-
al is governed by the hydrogen bonding ability of the molecules,
he molecular packing in crystals (effects from molecular shape,
ize, and symmetry), and other intermolecular interactions such as
harge transfer and dipole–dipole interactions in the solid phase
30,39].

The remaining descriptor, dipole length (DPLL) is an electronic
escriptor. In particular, electronic parameters are considered

mportant in establishment of QSAR models and are helpful to
uantify different types of intermolecular and intramolecular inter-
ctions, as these interactions are usually responsible for properties
f chemical and biological systems [30]. Dipole length is the electric
ipole moment divided by the elementary charge. Electric dipole

s a vector quantity, which encodes displacement with respect to
he centre of gravity of positive and negative charges in a molecule.
ipole length encodes information about the charge distribution in
olecules and is important for modeling polar interactions. Large

ubstituents decrease DPLL value which is not desirable [30,40].
he relative insensitivity of Ks to solute dipolarity is attributed to
he fact that molecules with significant dipolarity preferentially
olubilize at or near the micellar–water interface in what is often
escribed as an “alcohol-like” medium [1,30].

With considering the heterogeneity of the solutes with respect
o molecular structure, size, hydrogen-bonding affinities and polar-
ty, it is remarkable that a single model is adequate to correlate
he data. Finally, since the coefficients of the regression equation
ppear to be chemically reasonable, it should be provide a novel
eans of exploring the relationship between detergent molecular

tructure and nature of the corresponding micellar solubilization
icroenvironment. Hence, we conclude that using physicochem-

cal descriptor correlated the solubility data a good correlation is
btainable for solubility in cationic micellar media.

. Conclusion

The QSPR model provides significant additional insight into the
elationship between the molecular structure and fundamental
rocesses and phenomena in chemistry. Such a data processing
trategy is useful in describing the relationship between chem-
cal molecular structures and analytical parameters. Therefore,
he successful description of the micellar solubility presented
ith a few physicochemical significant molecular descriptors for
iverse chemical compounds in a cationic surfactant (CTAB). These
re simple to calculate, providing a rapid and accurate method

or estimation and description of solubility behavior in micel-
ar solutions. After GA-variable selection, stepwise-MLR analysis
as followed to develop a model for predicting the solubility

n aqueous micellar solution. The descriptors involved in the
orrelations reflect both the intermolecular and intramolecular

[

[

us Materials 161 (2009) 74–80 79

nteractions. In agreement with previous studies, it was found,
he incorporation solutes in aqueous micellar solutions (log Ks)
re primarily determined by the hydrophobic part of molecule.
ur study indicates the quantitative relationship between struc-

ure and property is a tool for the quantitation of physicochemical
roperties of solutes and for the prediction such as micellar solubil-

ty. Based on obtained results, it seems that quantitative structure
ctivity/property relationships (QSAR/QSPR) could be quite use-
ul for understanding processes that involve the transfer of solutes
etween two phases.
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